464 research outputs found

    Congruent and Incongruent Corticospinal Activations at the Level of Multiple Effectors

    Get PDF
    Motor resonance is defined as the subliminal activation of the motor system while observing actions performed by others. However, resonating with another person's actions is not always an appropriate response: In real life, people do not just imitate but rather respond in a suitable fashion. A growing body of neurophysiologic studies has demonstrated that motor resonance can be overridden by complementary motor responses (such as preparing a precision grip on a small object when seeing an open hand in sign of request). In this study, we investigated the relationship between congruent and incongruent corticospinal activations at the level of multiple effectors. The modulation of MEPs evoked by single-pulse TMS over the motor cortex was assessed in upper and lower limb muscles of participants observing a soccer player performing a penalty kick straight in their direction. Study results revealed a double dissociation: Seeing the soccer player kicking the ball triggered a motor resonance in the observer's lower limb, whereas the upper limb response afforded by the object was overridden. On the other hand, seeing the ball approaching the observers elicited a complementary motor activation in upper limbs while motor resonance in lower limbs disappeared. Control conditions showing lateral kicks, mimicked kicks, and a ball in penalty area were also included to test the motor coding of object affordances. Results point to a modulation of motor responses in different limbs over the course of action and in function of their relevance in different contexts. We contend that ecologically valid paradigms are nowadays needed to shed light on the motor system functioning in complex forms of interaction

    Fine-tuning the fuzziness of strong fuzzy partitions through PSO

    Get PDF
    We study the influence of fuzziness of trapezoidal fuzzy sets in the strong fuzzy partitions (SFPs) that constitute the database of a fuzzy rule-based classifier. To this end, we develop a particular representation of the trapezoidal fuzzy sets that is based on the concept of cuts, which are the cross-points of fuzzy sets in a SFP and fix the position of the fuzzy sets in the Universe of Discourse. In this way, it is possible to isolate the parameters that characterize the fuzziness of the fuzzy sets, which are subject to fine-tuning through particle swarm optimization (PSO). In this paper, we propose a formulation of the parameter space that enables the exploration of all possible levels of fuzziness in a SFP. The experimental results show that the impact of fuzziness is strongly dependent on the defuzzification procedure used in fuzzy rule-based classifiers. Fuzziness has little influence in the case of winner-takes-all defuzzification, while it is more influential in weighted sum defuzzification, which however may pose some interpretation problems

    The Grasping Side of Odours

    Get PDF
    Background: Research on multisensory integration during natural tasks such as reach-to-grasp is still in its infancy. Crossmodal links between vision, proprioception and audition have been identified, but how olfaction contributes to plan and control reach-to-grasp movements has not been decisively shown. We used kinematics to explicitly test the influence of olfactory stimuli on reach-to-grasp movements. Methodology/Principal Findings: Subjects were requested to reach towards and grasp a small or a large visual target (i.e., precision grip, involving the opposition of index finger and thumb for a small size target and a power grip, involving the flexion of all digits around the object for a large target) in the absence or in the presence of an odour evoking either a small or a large object that if grasped would require a precision grip and a whole hand grasp, respectively. When the type of grasp evoked by the odour did not coincide with that for the visual target, interference effects were evident on the kinematics of hand shaping and the level of synergies amongst fingers decreased. When the visual target and the object evoked by the odour required the same type of grasp, facilitation emerged and the intrinsic relations amongst individual fingers were maintained. Conclusions/Significance: This study demonstrates that olfactory information contains highly detailed information able to elicit the planning for a reach-to-grasp movement suited to interact with the evoked object. The findings offer a substantia

    42 correction of scid x1 by targeted genome editing of hematopoietic stem progenitor cells hspc in the mouse model

    Get PDF
    Targeted genome editing by engineered nucleases has brought the goal of gene correction within the reach of gene therapy. A candidate disease for HSPC gene correction is SCID-X1, because gene therapy trials with integrating vectors showed robust clinical efficacy even from few corrected cells but also the occurrence of leukemias due to insertional mutagenesis and unregulated transgene expression. To model SCID-X1 gene correction in preclinical studies, we developed a mouse model carrying the IL2RG human gene harboring a common disease-causing mutation in place of the murine Il2rg, allowing to use of the same reagents developed for gene correction of human cells. These mice have impaired lymphoid development which phenocopies that reported for Il2rg-/- mice. To assess the minimal level of corrected HSPC required to achieve immune reconstitution we performed competitive transplants with wild-type (WT) and Il2rg-/- HSPC and found that 1% of WT cells are sufficient to reconstitute in part the T and B cell compartments. We then tested gene correction of the murine Lin- HSPC by the delivery of donor DNA template by IDLVs followed by transfection of ZFN mRNAs. This protocol yielded high on-target nuclease activity (40%) and a mean of 6% transgene integration by HDR but also high cytotoxicity (65% cell loss) under the conditions we used. The surviving cells remained capable of expansion in culture and maintained their clonogenic potential. Importantly, upon transplant into lethally irradiated mice, only the gene corrected cells were able to generate lymphoid lineages (B and T cells), showing a clear selective advantage over the un-corrected SCID cells. These data indicate functional correction of the defective IL2RG gene by targeted editing. Furthermore, upon challenging the mice with a murine pathogen we observed viral-specific γIFN production by CD8+ gene corrected cells, proving their in vivo functionality. Yet, measuring the percentage of edited cells (either by NHEJ or HDR) within the HSC compartment long-term, we found that it was nearly undetectable. Despite the lack of HSC marking, gene corrected lymphoid cells persisted in the mice up to 7 months post transplantation within all the hematopoietic organs, indicating successful editing of at least 1% progenitors able to sustain long-term lymphopoiesis and partially correct the disease phenotype. We then developed a new protocol exploiting CRISPR/Cas9 technology that enabled to achieve substantial levels of targeted DNA repair by NHEJ (up to 70%) and HDR (up to 25%) with minimal cytotoxicity and provided stable engraftment of the edited cells in transplanted mice. By this strategy we are now assessing the impact of HSC vs. progenitor targeted editing and conditioning regimen for the extent and stability of disease correction. These studies will help establish the key factors underlying safe and effective rescue of the disease by HSPC gene editing and assist in the design of the protocol for its first clinical testing

    481. Targeted Genome Editing in Mouse Hematopoietic Stem/Progenitor Cells (HSPC) To Model Gene Correction of SCID-X1

    Get PDF
    Targeted genome editing by artificial nucleases has brought the goal of gene correction within the reach of gene therapy. A candidate disease for HSPC gene correction is SCID-X1, because gene therapy with early generation integrating vectors showed robust clinical efficacy even from few corrected cells but also the occurrence of adverse events due to insertional mutagenesis and unregulated transgene expression. We recently reported a strategy that enabled targeted integration of a corrective cDNA into the IL2RG gene in 6% of human HSPC with high specificity. Gene corrected HSPC generated polyclonal lymphoid cells that express the IL2RG protein and have a selective growth advantage over those carrying disruptive IL2RG mutations (Genovese, Nature, 2014). Here, to model SCID-X1 disease correction, we developed a mouse model carrying the IL2RG human gene including a common disease-causing mutation in place of the murine Il2rg gene, allowing to use the same reagents utilized for gene correction of human cells. These mice have impairment in lymphoid development which phenocopies that reported for Il2rg-/- mice. To assess the minimal level of corrected HSPC required to achieve immune reconstitution we first performed competitive transplants with wild-type (WT) and Il2rg-/- HSPC and found that 1% of WT cells are sufficient to reconstitute at least in part the T and B cell compartments. We then developed a protocol to obtain gene correction in murine Lin- HSPC based on the delivery of donor DNA template by IDLVs followed by transfection of ZFN mRNAs. This protocol was associated with high on-target nuclease activity (40%) and a mean of 6% transgene integration by HDR, but also with high levels of acute cytotoxicity (65% cell loss). The surviving cells remained capable of expansion in culture and preserved their clonogenic potential. Importantly, upon transplant into lethally irradiated mice, only the gene corrected cells were able to generate lymphoid lineages (B and T cells), showing a clear selective advantage over un-corrected cells. These data indicate functional correction of the IL2RG gene by our strategy. Yet, measuring percentage of correction within myeloid cells at long-term we found that it was almost undetectable. Despite the lack of HSC marking, gene corrected lymphoid cells stably persisted in the mice up to 7 months post transplantation within all the hematopoietic organs. Furthermore, upon challenging the transplanted mice with a murine pathogen (LCMV Arm.) we observed viral-specific γIFN production by CD8+ gene corrected cells at a similar extent as for WT mice, proving in vivo the functionality of corrected T cells. These results suggest that our protocol achieves biologically relevant levels of gene correction in progenitors that sustain long-term lymphopoiesis but is limited in multipotent HSC. Ongoing studies aim to improve murine HSC gene targeting and to compare safety and efficacy of gene correction vs gene replacement in our disease model

    VST - VLT Survey Telescope Integration Status

    Full text link
    The VLT Survey Telescope (VST) is a 2.6m aperture, wide field, UV to I facility, to be installed at the European Southern Observatory (ESO) on the Cerro Paranal Chile. VST was primarily intended to complement the observing capabilities of VLT with wide-angle imaging for detecting and pre-characterising sources for further observations with the VLT.Comment: 2 pages, 2 figures, conferenc

    Perception of Shadows in Children with Autism Spectrum Disorders

    Get PDF
    Background: Cast shadows in visual scenes can have profound effects on visual perception. Much as they are informative, they also constitute noise as they are salient features of the visual scene potentially interfering with the processing of other features. Here we asked i) whether individuals with autism can exploit the information conveyed by cast shadows; ii) whether they are especially sensitive to noise aspects of shadows. Methodology/Principal Findings: Twenty high-functioning children with autism and twenty typically developing children were asked to recognize familiar objects while the presence, position, and shape of the cast shadow were systematically manipulated. Analysis of vocal reaction time revealed that whereas typically developing children used information from cast shadows to improve object recognition, in autistic children the presence of cast shadows—either congruent or incongruent—interfered with object recognition. Critically, vocal reaction times were faster when the object was presented without a cast shadow. Conclusions/Significance: We conclude that shadow-processing mechanisms are abnormal in autism. As a result, processing shadows becomes costly and cast shadows interfere rather than help object recognition

    Democratic Teacher Education Practices

    Get PDF
    [Living reference work entry] This entry provides an insight into the turbulent and recently disappointing events in the history of Design and Technology (D&T) teacher education in England over the last 150 years. It is a complex journey that needs to include a review of the generic history of teacher education in England, the differing educational needs of children, the changing role of D&T as a school curriculum subject, the requirements for an appropriately trained workforce to meet the economic needs of the country, and how various government educational initiatives and interventions (Gillard 2018) have affected how teachers in general and D&T teachers in particular have been and still are trained today. All these factors are inseparably intertwined. Therefore, this entry discusses them all together in chronological date order

    Grasping Kinematics from the Perspective of the Individual Digits: A Modelling Study

    Get PDF
    Grasping is a prototype of human motor coordination. Nevertheless, it is not known what determines the typical movement patterns of grasping. One way to approach this issue is by building models. We developed a model based on the movements of the individual digits. In our model the following objectives were taken into account for each digit: move smoothly to the preselected goal position on the object without hitting other surfaces, arrive at about the same time as the other digit and never move too far from the other digit. These objectives were implemented by regarding the tips of the digits as point masses with a spring between them, each attracted to its goal position and repelled from objects' surfaces. Their movements were damped. Using a single set of parameters, our model can reproduce a wider variety of experimental findings than any previous model of grasping. Apart from reproducing known effects (even the angles under which digits approach trapezoidal objects' surfaces, which no other model can explain), our model predicted that the increase in maximum grip aperture with object size should be greater for blocks than for cylinders. A survey of the literature shows that this is indeed how humans behave. The model can also adequately predict how single digit pointing movements are made. This supports the idea that grasping kinematics follow from the movements of the individual digits

    Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome

    Get PDF
    BACKGROUND: Thrombocytopenia is a serious issue for all patients with classical Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) because it causes severe and life-threatening bleeding. Lentiviral gene therapy (GT) for WAS has shown promising results in terms of immune reconstitution. However, despite the reduced severity and frequency of bleeding events, platelet counts remain low in GT-treated patients. OBJECTIVE: We carefully investigated platelet defects in terms of phenotype and function in untreated patients with WAS and assessed the effect of GT treatment on platelet dysfunction. METHODS: We analyzed a cohort of 20 patients with WAS/XLT, 15 of them receiving GT. Platelet phenotype and function were analyzed by using electron microscopy, flow cytometry, and an aggregation assay. Platelet protein composition was assessed before and after GT by means of proteomic profile analysis. RESULTS: We show that platelets from untreated patients with WAS have reduced size, abnormal ultrastructure, and a hyperactivated phenotype at steady state, whereas activation and aggregation responses to agonists are decreased. GT restores platelet size and function early after treatment and reduces the hyperactivated phenotype proportionally to WAS protein expression and length of follow-up. CONCLUSIONS: Our study highlights the coexistence of morphologic and multiple functional defects in platelets lacking WAS protein and demonstrates that GT normalizes the platelet proteomic profile with consequent restoration of platelet ultrastructure and phenotype, which might explain the observed reduction of bleeding episodes after GT. These results are instrumental also from the perspective of a future clinical trial in patients with XLT only presenting with microthrombocytopenia
    corecore